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Many cadmium 'apatites' are 10 to 20% halogen deficient, with the halogen atoms distributed over a range of 
positions on the hexad axis instead of occupying the ideal positions +(0,0,¼). Direct determination of the 
probability distribution of their positions has been attempted in three ways: (i) Fourier atomic-center density 
syntheses, (ii) least-squares refinement of the occupancy factors of a multiplicity of sites uniformly spaced 
along the c axis, and (iii) fitting of postulated distribution functions to the 'observed' structure factors corre- 
sponding to halogen centers only. All three methods are limited similarly by the resolving power afforded by 
the reflections in the accessible volume of reciprocal space. The results from all three methods are consistent 
with a 'chain' model in which the center of each chain occupies the modal position (0,0,~) or (0,0,]). Being 
'oversize' (diameter >~), halogen ions in succeeding half-cells are forced to deviate further and further from 
this modal position, until finally the steric strain is relieved by the occurrence of a vacancy, after which a new 
chain begins. Qualitative agreement is achieved with a uniform distribution of atomic centers over a range, fi, 
on each side of the modal positions, with fi varying from 0.04 in the chloride to 0.2 in the iodide. No other 
simple distribution tried, such as Cauchy or Gaussian, was applicable to all compounds. 

1. Introduction 

The structures of five cadmium apatites have been 
described in earlier papers (Sudarsanan,  Young & 
Donnay,  1973; Sudarsanan,  Young & Wilson, 1977). 

Normalized to full occupancy of the oxygen sites in a 
structure of the fluorapatite type, they are halogen and 
cadmium deficient, with formulae Cdl_x(MOa)Pf~_2x , 
and no definite positions on the hexad axis can be 
ascribed to the halogen atoms. These appear to be 
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distributed over a range of sites centered on the ideal 
positions +(0,0,¼). Sudarsanan, Wilson & Young 
(1972) have proposed the following model: The 
halogen atoms are too big to pack stoichiometrically 
along the sixfold screw axis, the ionic diameter 
exceeding ~c by a fraction a of  c. If one atom is at the 
ideal position (0,0,¼), the next cannot be at (0,0,3), but 
must be at (0,0, 3 + a);  the next cannot be at (0,0,¼), 
but at (0,0,¼ + 2a); the next at (0,0, 3 + 3a); and so 
on. Eventually, when nn reaches some limit fi < ¼, the 
steric strain is relieved by the omission of an atom, and 
a new sequence begins. The atoms thus occur in chains 
of length 2(½ + a)nmaxC = fi(1 + 2a)c/n, with one atom 
missing for every 2nma x + 1 present, and the probability 
of finding an atomic center at (0,0,z) is more or less 
uniform over the ranges ¼ - 6 < z < ¼ + 6 and 3 _ 6 < z 
< 3 + ft. The fractional deficiency, 2x, from the 
stoichiometric halogen content is thus 1/(2fiht + 2). 
Refinement of the model leads to values of 2x and 6, so 
that a and X - X  distances can be determined. 

If the arrangement described were perfectly regular, 
it would result in the formation of  a superstructure with 
a long c axis, but a continuous scan along d*(00/) of 
the iodide showed no additional reflections in the range 
from l < 1 to l ~ 8. However, the above model is more 
precise than is necessary; instead of symmetrical chains 
containing an odd number of atoms centered on (0,0, l) 
or (0,0, 3 ) one could have symmetrical chains with an 
even number of atoms centered on (0,0,¼ + ½c0, (0,0, 3 
+_ ½n). Equally, the chains could be unsymmetrical 
about the atoms nearest the ideal position. These 
further possibilities reduce the precision of the halogen 
siting, make a continuous distribution of sites over a 
range of z more plausible, and explain the absence of an 
observable superstructure. Possible approaches to the 
determination of this distribution are discussed in §2, 
and are applied to the experimental results for the 
various cadmium 'apatites '  in §4. 

2. Determination of the distribution of halogen sites: 
theoretical 

Suppose that the fraction of halogen atoms having their 
centers between (O,O,z) and (O,O,z + dz) is f(z)dz, 
and that the parameters of the nonhalogen atoms are 
independent of the presence or absence of a halogen 
atom at z. The structure factor of the hkl reflection 
should then be given by 

1 

F(hkl) = F~(hkl) + X(hkl)j f(z)  exp(2rdlz) dz, (1) 
0 

where X(hkl) is the scattering factor for the X ion at 
the Bragg angle in question (thermal-motion effects 
included) and Fl(hkl) is the structure factor of the rest 

of the unit cell. Because of  the halogen deficiency, 

1 

f f ( z ) d z  = 2 - 4 x  (2) 
0 

instead of the ideal value 2. The quantity 

F(hkl)-  F~(hkl) 
A(hkl) = (3) 

X(hkl) 

should thus be independent of h and k for a given l, 
since, by equation (1), it is given by 

1 

A(hkl) = f f(z) exp(2zdlz) dz. 
0 

(4) 

This consequence of the model is testable, since 

Fob s (hkl) - -  F 1 ~al~ (hkl) 
A°bs(hkl) = X(hkl) (5) 

is obtainable for each observed reflection, and should 
be constant (for fixed l) within the estimated error of 
observation and calculation. The observable infor- 
mation about the distribution of X atoms thus reduces 
to a small number of values A(**l) obtained by 
averaging the quantities given by equation (5) over h 
and k for fixed l. For Mo K(~ radiation the highest 
observed value of l is about 15 for these substances, but 
because of the space group A(**]) = A(**l) for l even 
and A(**l) = 0 for l odd, so that there are only six or 
seven distinguishable numerical data from which to 
determine f(z). Three approaches suggest themselves: 
(i) A Fourier synthesis with the A(**l) as coefficients. 
(ii) Least-squares refinement of the occupancy factors 
of a sequence of X sites uniformly spaced along the z 
axis. (iii) Postulation of a plausible form for f (z)  and 
refinement of its adjustable parameters. There are two 
variants of the first approach: a one-dimensional 
Fourier synthesis with the A(**l)'s only, or a line 
section through a three-dimensional synthesis based on 
all the A(hkl)'s. In the second approach there is no 
fundamental necessity for the X sites to be uniformly 
spaced, but it is convenient both theoretically and 
practically, and uniform spacing was in fact used in 
part I (Sudarsanan, Young & Wilson, 1977). From 
the mathematical point of view it is simply a particular 
case of the third approach,  fitting a postulated model, 
but it is not a model based on any physical picture. 

2.1. Fourier synthesis; line section vs line synthesis 

From equation (4), 

1 

d(l) = J f (o  exp(2rdlOd~, (6) 
0 

where the redundant indices h and k have been dropped 
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and z has been replaced by ¢ Multiplying each side by 
exp(-2rdlz) and adding gives 

L 

A(z)=- ~ A(l)exp(-2rdlz). (7) 
l = - L  

On substituting for A(1) from equation (6) and 
summing the geometric series, this becomes 

' sin[zc(2L + 1)(~-Z)]d~ ' 
A(z) = f f (O (8) 

sin[zr(~ -- Z)] 0 

where L is the largest value of l for which data are 
available. The left-hand side is simply a (truncated) 
one-dimensional Fourier synthesis with A(l) as 
coefficients. The right-hand side is a convolution of the 
desired function f ( z )  with an undesired smearing 
function; even if f (z)  were actually a delta function the 
syntheses would give peaks with a half-width of ~ 1/2L, 
or in the present case ~0-035. Any detail of f ( z )  on a 
smaller scale will not be resolved, and the smearing 
implicit in the convolution (7) cannot be deconvoluted 
by the usual, or indeed any, methods (Jones & Misell, 
1970). The non-observed Fourier coefficients are not 
available, and, as far as observation goes, could be 
assigned arbitrarily, giving arbitrarily different func- 
tions f (z). 

Rather than attempting to estimate the best values of 
A(**/), it might be thought preferable to perform a 
three-dimensional synthesis 

E A(hkl)expI-2rd(hx + ky + lz)]. (9) 
h , k , I  

This should give appreciable densities only near the line 
0,0,z; the distribution is f ( z )  smeared with the 
transform of the limiting sphere, which acts as a three- 
dimensional window in reciprocal space. This approach 
has the advantage of giving an experimental deter- 
mination of the smearing function; the variation 
perpendicular to 0,0,z should result only from lack of 
resolution, whereas the variation along 0,0,z is the 
convolution of the desired distribution function and the 
smearing function. The line section obtained by putting 
x = y = 0 in equation (9), 

B(z)-- ~. A(hkl)exp(-2zdlz), (10) 
h , k , l  

is not identical with the line synthesis A(z) given by 
equation (7). It may be written 

B(z) = • D(l) exp(--2rd/z), (11) 
l 

where 
D(I) = ~ A(hkl). (12) 

h , k  

It seems fairly obvious that D(1)/D(O) will decrease 
more rapidly with increasing l than A(I)/A(O) does. In 
the ideal case postulated above, D(l) will be A(/) 
multiplied by the number of reflections in the lth layer 
line. This is approximately the area of the small circle 

defined by the intersection of the limiting sphere and the 
lth layer of the reciprocal lattice divided by C*, the area 
of the appropriate face of the reciprocal unit cell, and is 
thus approximately 

K[(L + e) 2 -  12], (13) 

where K and e are constants depending on the 
dimensions of the reciprocal unit cell and the radius of 
the limiting sphere. Equation (12) becomes 

D(I) = K[(L + e) 2 - 12]A(1). (14) 

With the aid of equations (6) and (14) we can obtain the 
equivalent of equation (8) for the line section. 
Substitution in equation (11) gives 

i { Ll[( L 
B ( z ) = K f f ( O  ix". + e)2-- 121 

I =  - . 

x expl2n4l(~- z)] } de (15) 

The summation is rather tedious; it leads to 

I 

K f f(OH(~-z)dz, (16) B(z)=  
0 

where 

H(x) --- (/4L(2e - 1) + 4e 2 + [4L(1 - 2e) + 2 

- 4e 2] cos 2 zrx} sin zr(2L + 1)x - 2(2L + 1) 

× sin zrx cos rex cos zt(2L + 1)x)/4 sin 3 ztx. (17) 

This is the Fourier-series analogue of the spherical 
Bessel function of Fourier-transform theory. The 
coefficient of sin zr(2L + 1)x depends somewhat on the 
value of e, being simplest for e = ½, but effectively the 
true function f ( z ) i s  convoluted with a (sin x -  
x cos x)/x 3 function in forming the line section, instead 
of with (sin x)/x as in forming the one-dimensional 
synthesis. The smearing is about 30% greater for the 
line section; this is to be expected, since B(z) is 
effectively A(z) calculated with an additional 'artificial 
temperature factor' of roughly 1 -  12/L 2. The one- 
dimensional synthesis ]equation (7)] is thus to be 
preferred, on two grounds. (i) Its theoretical resolving 
power is better. (ii) Because of the techniques of data 
collection (especially the omission of reflections that 
might have been affected by simultaneous diffraction at 
the particular crystal setting used) the number of 
reflections actually available (N in Table 1) does not 
decrease smoothly with increasing l in accordance with 
the expression (13). The resulting distortion of B(z) is 
difficult either to predict or to allow for. 

2.2. Least-squares refinement of occupancy factors 
The second approach is to consider the halogen 

atoms as occupying equally spaced sites along the 
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hexad axis, and to refine the occupancy factors of these 
sites by some least-squares process. If there are 2N + 1 
sites with spacing y, and the site-occupancy factor of 
the j th  site is fj, the calculated structure factor for the 
halogens, for comparison with the 'observed' corrected 
and inflated factor A(I), will be 

N 

G ( I ) =  Z f,.exp(2n/jl?). (18) 
j = - N  

The problem is now to determine the best values of fj. 
There cannot be a unique solution for N greater than L, 
for there would then be more unknowns than deter- 
mining equations. If N is equal to L no least-squares 
technique is needed, since there are 2L + 1 equations to 
be solved for 2L + 1 unknowns: 

L 

)" f i e x p ( Z n i l j y ) - A ( l ) = O ,  - L  < l  <L.  (19) 
i = - L  

In general this will have a single solution, though in 
particular cases there may be convergence problems. 
One particular choice of y, 

y =  (2L + l) -1, (20) 

leads to an easy and illuminating solution; this choice 
just covers the length of the axis with equally spaced 
atomic sites. To find a particular ~:~La+Y fro, for this 
choice of sites, divide each of the 1) equations 
(19) by exp(2nilmy) and add: 

L L 

~ f jexp[2ni ( j - -  m)ly] 
j = - L  1 = - L  

L 

- ~ A(l) exp(-Z~ml?)  = 0, (21) 
l =  - L  

or, after performing the summation over l in the first 
term and making use of equation (7), 

L sin[(2L + 1)n( j ' -m)?]  
Z fJ sin[n(j--  m)7] = A(my). (22) 

j = - L  

Equation (22) is in fact valid, whatever the choice of y, 
but for the choice (20) all the sine terms on the left- 
hand side vanish except that with j = m, giving 

fm = (2L + 1)-~A[m/(2L + 1)]. (23) 

In other words, within a constant factor the site- 
occupancy factors are just the values given by the 
Fourier synthesis at the points m/(2L + 1). One may 
expect this result to hold approximately for other 
choices of y, since the coefficient of fm in equation (22) 
remains (2L + 1), and the coefficients of the other 
terms are small (though not very small) in comparison. 

When N is less than L the occupancy factors can be 

chosen to give the best least-squares fit. The simplest 
residual to manipulate is 

L 

R~ = }" [ G ( I ) -  A(I)] 2, (24) 
I= - L  

and it is reasonable to use it in the present problem, 
since the signs of the A's are known. Differentiating R' 1 
with respect to fm and equating to zero gives 

L 

c3Ri- 0 = 2 Z [G(I) - A(I)I exp(Zn/mly), (25) 
~f rn l = -L 

L L 

~. G(1) exp(2nimly) = ~. A(l) exp(2rdm;?'), (26) 
1 = - L  I = - L  

N sin[(2L + 1)n(j + m)y] 
Z fJ sin[n(j + m)y] = A ( - m T ) .  (27) 

j = - N  

With a change in the sign of m this takes the same form 
as equation (22), though the summation has (2N + 1) 
terms instead of (2L + 1), and one would expect that 

fm  "" (2L + 1)-lA(my), (28) 
as before. For 

7 = n/(2L + 1), (29) 

where n is any integer, equation (28) becomes exact. 
A similar argument can be applied to the three- 

dimensional synthesis [equation (9)]. The analogue of 
equation (24) is 

R~ = Z [G(I) - A(hkl)] 2, (30) 
hkl  

,gR  
- 0  = 2 }" [ G ( I ) -  A(hkl)] exp(2zdmly), (31) 

hkl  

~ fj  exp[2rci(m + j)17] 
h k l ; j  

= ~ A(hkl)exp(2n/mly), (32) 
hkl  

= B ( - m y )  (33/ 

from equation (10). The left-hand side is easily seen to 
be 

f jH[  (m + J)Y], (34) 
J 

where 
H ( x ) =  ~ exp(2nilx), (35) 

hkl  

and is approximately given by equation (17). There is 
no choice of 7that will make H[(m + j )y] vanish for all 
but one value of j, but it is equal to the total number of 
reflections for j = - - m ,  and has appreciably smaller 
values for all other j. Then, approximately, 

f,, =U-lB(mT) ,  (36) 

where N is the total number of reflections. 
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Fig. 1. Comparison of halogen distributions as indicated by the A(**l) line syntheses (solid curve) and by least-squares refinements of site- 
occupancies at uniformly spaced sites (~-). The error bars are e.s.d.'s. 

It is interesting, though disappointing, to find that the 
least-squares refinement of occupancy factors suffers 
from the same defects as the Fourier-synthesis 
approach. The occupancy factors do not refine towards 
the 'true' distribution f (z ) ,  but towards the distribution 
represented by the Fourier synthesis, reproducing its 
ripples exactly for sites chosen in accordance with 
equation (20) or (29) and approximately for other 
choices. A more general argument leading to similar 
conclusions about the relation of Fourier synthesis and 
least-squares refinement has been given by Wilson 
(1976a). The Fourier line-synthesis results and the 
least-squares site-occupancy refinement results for the 
five 'apatites' are graphically compared in Fig. 1. 

2.3. Testing and optimization of  a postulated 
distribution 

If some particular form is expected for f (z ) ,  
depending on one or more adjustable parameters, the 

values of the parameters can be adjusted to give the 
best fit, in some sense, between the postulated distri- 
bution, say g(z), and the 'true' distribution f ( z ) .  It can 
be shown (Wilson, 1976a) that the mean-square 
difference between f (z) and g(z), 

l 

/ [ f  (z) - g(z)12dz, 
0 

(37) 

has its minimum value for the same values of the 
parameters as those that minimize the residual R' 1 based 
on the Fourier coefficients of f (z) and g(z). Minimizing 
this residual is thus exactly equivalent to obtaining the 
least-squares fit between the functions. Weighting the 
terms in the residual corresponds to obtaining a least- 
squares fit between functions distorted so that their 
Fourier coefficients are muliiplied by square-roots of  
the weights. 
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The postulated function of immediate interest is the 
uniform distribution discussed in § 1. This leads to 

f (z )  = f ,  ¼--a_<z_<¼+ ~i } 
or l - f i < z < ¼ + 6  (38) 

= O, otherwise, 

where f and 6 are adjustable parameters. One has then 
1/4 + c$ 

G(l) = f f exp(2rdlz)dz 
1/4 - 8 

3/4 + t$ 

+ f .f exp(2rdlz)dz 
3/4 -- 8 

sin 2rd6 
= 2f (-) u2 - - ,  /even 

= 0 ,  

Equation (24) becomes 

R~= E [ 2 f ( - - ) t / 2 - -  
/ (even} 

+ Z A~q), 
/ (odd)  

l odd. 

sin 2 rd fi ] 
A(l) ] 7d 

and differentiation with respect to f and fi gives 

8R~ - 0 =  Z [2 f ( - )  t/2sin2rdfi- A(/) ]  
8f 7d 

/(even} 

sin 27r/fi 
x 4(--) ̀ '/2 ~ ,  

zd 

(39) 

(40) 

(41) 

(42) 

Z (_),/2A(l) sin 27~l___~5 ] 
7rl 

f = /(even} ; (43) 
sin 2 27rl5] [2y 

/ (even)  

8R'~ - 0 = S f i  E [ 2f(-)l/2sin2zdfi-rd A(/) ]  
/(even} 

x 8f(--) '/2 cos 2rd6, (44) 

~-~ sin 4rdfi 
7d - ~ (-)t/ZA(l)cos 27rh~. (45) f 

/(even} I l even l  

Equations (43) and ( 4 5 ) m u s t  be solved simul- 
taneously for f and fi; there is no obvious way of doing 
this except trial-and-error, and it was found just as easy 
to fit G(l), as given by equation (40), directly to the 
observed fi(l) by trial-and-error. 

It should be noted that a Fourier series with effec- 
tively L/2 terms, where L is at most 14, is not capable 
of producing a very good representation of the 
truncated uniform distribution postulated in equation 
(38). For small 5 the representation is bell-shaped, 

vaguely like a Cauchy distribution with some ripples. 
For larger values of fi the representation (not the 
distribution) becomes bimodal (approximately when 
the width of the distribution exceeds one-tenth of the 
length of the axis), and the ripples become more 
prominent. In Fig. 1, the Cds(PO4)3Br and Cds(VO4)3I 
cases are particular examples of this effect of producing 
false minima in the representation. 

The factor (_)//2 in equation (40) arises only from 
the choice of origin; it would disappear if the origin 
were shifted to (0,0,¼), but does appear in the 
expressions for G(l) corresponding to any model 
distributions centered on (0,0,¼) and (0,0,3). For 
values of 6 greater than 1/2L (about 0.04 in the present 
case) the factor (sin 2rd6)/nl in equation (40) produces 
non-trivial changes in sign and non-monotonic de- 
creases in magnitude within the observable range of I. 
Other model distributions that might be considered 
(Gaussian or normal, Cauchy or Lorentzian, La- 
p lac ian . . . )  lead to Fourier components G (l) decreasing 
smoothly with l, and thus cannot be made to match 
values of A(l)that show anything other than alternation 
of sign and monotonic decrease in magnitude. The 
observed signs of A(l) thus give some immediate 
information about the type of distribution, but it is 
difficult to utilize it positively; it can rule out some 
model distributions, but may not he'p in finding satis- 
factory ones. 

The remark following equation (35) applies also to 
the optimization of postulated disulbutions. The fit 
obtained is between the model and the observed 
distribution as represented imperfectly by its observed 
Fourier components, and not between the model and 
the real distribution. 

3. Experimental results for do(**l) 

According to the theory developed in equations (1)-(5), 
the quantities 

Fo(hkl) - Fl(hkl) 
A°(hkl) = X(hkl) ' (46) 

where Fo(hkl) is the observed structure factor, F~(hkl) 
is the structure factor calculated for the non-halogen 
atoms only, and X(hkl) is the temperature-corrected 
atomic scattering factor for the halogen atoms, should 
have the value zero for l odd, and should have the same 
value for all h and k for any given even l. Since Ao(hkl) 
depends on a small difference between two large 
quantities, one expects, and finds, a considerable scatter 
in its 'observed' values. The amount of the scatter gives 
some indication of the reliability of the measurements. 
The average values (fixed l, variable h and k) for 
Ao(**l ) are collected in Table 1 for the available 
cadmium 'apatites' (Sudarsanan, Young & Donnay, 
1973; Sudarsanan, Young & Wilson, 1977). The value 
tabulated in each case is in fact that corresponding to 
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Table 1. Values o f  Ao(**l) (x 104) and standard deviations for  five cadmium 'apatites' 

Cds(VOa)3I 

l Ao(**l ) o N 

0 6233 264 141 
1 -21  45 155 
2 -2103 71 155 
3 12 50 157 
4 -577  52 151 
5 7 60 128 
6 -382  56 155 
7 80 70 148 
8 -942  69 138 
9 - 2 2  82 117 

10 267 83 107 
11 127 132 81 
12 435 157 47 
13 -558  478 24 
14 - 2 8  284 40 
15 - -  - -  

Cds(PO4)3Br Cds(PO4)3C1 

Ao(**l) o N Ao(**l) a N Ao(**l) o N Ao(**l) o N 

7605 291 108 8476 196 178 8059 320 100 8916 390 149 
-212  108 81 47 59 125 21 71 145 339 290 159 

-3750  192 83 -5902 208 138 -5507  184 148 -7465 424 161 
141 89 79 - 5 2  75 149 - 5 3  97 171 -137  280 159 
113 122 92 2720 79 142 2784 103 151 7147 338 144 

-108  118 77 - 6 0  70 153 66 84 148 - 7 4  274 156 
797 161 69 -1408 79 127 -1773 109 145 -4775 393 152 
353 153 71 -120  83 87 103 130 140 140 343 134 

-937  167 88 255 120 85 940 154 101 3704 463 125 
- 1 2 0  167 71 93 134 70 110 192 93 74 432 111 

824 258 68 346 175 67 -158  252 94 -1952 806 86 
217 199 64 -65  222 55 275 388 74 282 1166 64 

- 1 9  478 41 316 276 44 902 321 55 -809  1866 52 
-421 594 58 36 519 31 -379  850 21 - -  - -  

814 735 50 . . . . . .  
- 7 6  1112 18 . . . . . .  

Cds(AsO4)3Br Cds(VOa)3Br 

half the unit cell; if the compound were stoichiometric 
the tabulated Ao(**l) for l = 0 should be unity. The 
table also gives the number of observations, N, on 
which each average is based, and a standard deviation, 
a, calculated as 

\_ [Ao(hkl) - Ao(**/)l 2 

trz_ t,.- (47) 
N ( N -  1) 

It should be noted that tr is merely a measure of internal 
consistency; it is not explicitly based on counting 
statistics and other random errors, and makes no 
explicit allowance for effects arising from atomic 
scattering factors, temperature factor, scaling factors, 
etc. 

The line syntheses produced with these A(**l) values 
are shown in Fig. 1 along with the site-occupancy 
refinement results for the same physical feature, the 
distribution of halogen ions along the 63 axis. 

3.1. A llowance for  dispersion 

Equation (46) is formally correct, whether or not the 
atomic scattering factors have appreciable in- 
quadrature components. If the numerator is in fact 
complex, of the form A + iB, and the denominator of 
the form a + ib, then 

A + i B  
Ao(hkl ) _ - -  (48) 

a+ ib 

(A + i B ) ( a -  ib) 
= (49) 

(a + i b ) ( a -  ib) 

Aa + Bb B a -  Ab 
- + i ~  ( 5 0 )  

a 2 + b 2 a 2 + b 2 

Ideally the numerator and denominator in equation 
(48) would have the same phase, and the imaginary 
part of equation (50) would be zero. In fact, the 

imaginary term was always small, and subject to a 
large statistical error. The quantity given in Table 1 is 
the first term, (Aa + Bb)/(a 2 + b2). 

3.2. Effects of  systematic error 

The signs of the d(hkl)'s depend on the relative 
magnitudes of the observed structure factors and of the 
structure factors calculated for the non-halogen atoms 
only. The temperature-corrected atomic scattering 
factor for the halogen atom, X(hkl )  in equation (46), 
enters into the determination of the magnitude of 
d(hkl), but cannot affect its sign. Since the thermal 
parameter fl33 of the halogen atoms is not reliably deter- 
minable from the structure refinement (being too 
strongly correlated with other parameters of the 
model), only a value estimated by analogy with similar 
compounds can be used in calculating A(hkl); one 
must, therefore, conclude that the signs of the A(hkl)'s, 
and particularly of the d(**/)'s, are more reliable than 
their magnitudes. This statement is especially true for 
the higher values of l; A(**0) does not depend on fl33, 
but only on fl~ and fl22, and A(**2) is little affected. 

The signs as well as the magnitudes of the A(hkl)'s 
are, however, strongly dependent on the temperature 
factors of the nonhalogen atoms, and on the overall 
scaling factor. It is becoming recognized (Wilson, 
1974; Lomer & Wilson, 1975) that the overall scaling 
factors obtained by different least-squares refinement 
procedures may differ somewhat from each other and 
from that required to produce calculated intensities that 
are equal, on the average, to the observed intensities, 
and the same is true for the overall temperature factor 
(Wilson, 1976b). What is wanted in the present case is, 
presumably, a third, again slightly different, set of 
parameters that makes the average observed and 
calculated structure factors equal. The values of d(**l) 
for l odd give some indication of whether uncertainties 
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Table 2. Estimates of halogen content of half unit cell (stoichiometric composition = 1.000) 

Compound 

Cds(VO4)3I 
Cds(POa)3Br 
Cds(AsO4)3Br 
Cds(VO4)3Br 
Cds(POa)3C1 

Figures in parentheses are standard deviations. For explanation see text. 

Ao(**O) for all reflexions and for stated ranges of sinZO 
Single Sum of ,~ ~ -, 

atom at occupancy >0.11 >0.22 >0.33 
(0,0,¼) °~ factors tli) All (iii) -<0-11 _<0.22 <0.33 -<0.44 >0.44 

0.800 (11) 0.734 (9) 0-623 (26) 0.670 (50) 0-684 (58) 0.641 (59) 0.525 (76) 0.561 (54) 
0.838 (11) 0.830 (19) 0.761 (29) 0-846 (17) 0.705 (68) 0.825 (43) 0.685 (72) t~v~ 
0.911 (6) 0.925 (16) 0.848 (20) 0-849 (15) 0.872 (29) 0.763 (66) 0.847 (43) 0.903 (45) 
0-880 (8) 0-874 (12) 0.806 (32) 0.835 (59) 0.776 (88) 0.740 (70) 0.868 (27) ~iv~ 
0-836 (10) 0.845 (19) 0.892 (39) 0.774 (109) 0.894 (52) 0.886 (41) 0.877 (90) 0.975 (146) 

From length ofc axis 
with 

( "~ 

ionic crystal 
radii radii 

0.74 0.79 
0.83 0.89 
0.83 0.90 
0.83 0.90 
0-90 0.97 

(i) Taken from Table 5 of Sudarsanan, Young & Wilson (1977). (ii)Taken from Table 6 of Sudarsanan, Young & Wilson (1977). (iii)Taken 
from Table 1 of this paper. (iv) All reflections with sin 2 0 > 0.33. 

in the overall scaling factors and in the temperature 
parameters of the nonhalogen atoms are large enough 
to vitiate any inferences drawn from the signs and 
magnitudes of the A(**l)'s for l even. An examination 
of Table 1 permits the following conclusions. 

3.2.1. The magnitudes of A(**I) for l odd, 
theoretically zero, are in fact satisfactorily close to zero 
for all odd values of l and for all five substances. For 
about three-quarters of the entries in Table 1 the 
magnitude of A(**/) for l odd is less than its standard 
deviation, as given by equation (47); it exceeds twice its 
standard deviation only for (**7) of Cds(PO4)3Br. 

3.2.2. There is no tendency for A(**I) for l odd to be 
predominantly positive or predominantly negative for 
any substance. 

3.2.3. There is no detectable tendency for a change 
in predominant sign with increasing l, either for any 
substance, or for all substances taken together. 

3.2.4. Conclusion 3.2.2 is sensitive to errors in 
overall scaling factors, and conclusion 3.2.3 to errors in 
the temperature parameters of the nonhalogen atoms. It 
thus appears that, within the accuracy implied by the 
standard deviation of A(**I) for l odd, uncertainties in 
the scaling factors and in the nonhalogen temperature 
parameters are not a source of substantial systematic 

errors. Errors in the positional parameters of the 
nonhalogen atoms will add to the scatter of the A(hkl)'s 
for l odd, and will thus increase the standard deviation 
of A(**l) for I odd. 

3.2.5. It is reasonable to regard the standard 
deviation of A(**/) for l odd, therefore, as an estimate 
for the magnitude of the effect of errors and uncertain- 
ties in the nonhalogen part of the structure on the 
magnitude of A(**I), even when l is even. It is thus 
prudent to regard the magnitude of A(**/) for even l as 
being possibly subject to a 'zero error' of the order 
of the standard deviations of A [ * * ( I - 1 ) l  and 
A[**(I + 1)], in addition to a random error given by its 
own standard deviation. 

3.2.6. For l even the values of Ao(**l ) depend 
critically on the assumed values of the atomic scatter- 
ing factor and of the thermal parameters for the 
halogen atom. In principle, the correctness of these can 
be checked by examining the behavior of Ao(**l ) 
calculated for annuli in reciprocal space corresponding 
to increasing mean values of sin 2 0. The results for the 
hk0 reflections are given in Table 2, columns 5 to 9, the 
ranges of sin 2 0 being 0-0.11,  0-11-0.22, 0.22-0.33,  
0.33-0.44,  >0.44. These ranges were chosen as 
containing approximately equal numbers of reflections 

Compound 

Cds(VO4)3I 
Cds(PO4) 3 Br 
Cds(AsO4)3Br 
Cds(VO4)3Br 
Cds(POa)3CI 

Table 3. Values of A,,(**4) for various ranges of sin 2 0 

Figures in parentheses are standard deviations. 

Range of sin 2 0 

All 

--0.058 (5) 
0.011 (12) 
0.272 (8) 
0.278 (10) 
0.715 (34) 

<0-11 

--0.071 (18) 
0.020 (15) 
0.278 (12) 
0.274 (19) 
0.751 (86) 

>0.11 
<0.22 

--0.050 (13) 
0.023 (12) 
0.268 (11) 
0.290 (24) 
0.648 (37) 

>0.22 
<0-33 

-0.056 (9) 
0.017 (26) 
0.273 (10) 
0.309 (11) 
0.711 (41) 

>0.33 
<0.44 

-0.055 (11) 
--0-062 (58) 

0-275 (20) 
0.266 (25) 
o.688 (89) 

>0.44 

--0.064 (12) 

0.269 (20) 
0.238 (28) 
0.827 (124) 
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(~25); for the two compounds marked (iv) in the table 
there were comparatively few higher-angle reflections 
and the last two zones were combined. For most of the 
substances there is no indication of a trend with sin 2 O. 
For one, Cds(VO4)aI, Ao(**O ) appears to decrease with 
sin2 0, but the change is within the possible statistical 
scatter; this matter is discussed further in §4.2.4. It 
seems, therefore, that the assumed values of the atomic 
scattering factor and of the thermal parameters are 
confirmed within the (rather large) statistical scatter. 

As the hk0 reflections are a special case, a similar 
correlation was made for the hk4 reflections. The 
results are given in Table 3. Except for Cds(PO4)3Br 
there are about 10 reflections in the first range of sin 2 0 
and about 30 in the others; Cds(POa)3Br has 20 in the 
first range, but only 10 in the fourth, for which the sign 
is anomalous. No compound shows a consistent trend 
of Ao(**4) with increasing sinZ 0, again confirming the 
general correctness of the fl's and atomic scattering 
factors. The values for Cds(VO4)31 are too small, in 
comparison with their standard deviations, to confirm 
or contradict the trend suggested by the hk0's for this 
substance. 

4. Interpretation 

4.1. Deductions about the halogen distribution func- 
tion from the signs, only, of the A o (**l)'s 

We have seen that (i) the signs of Ao(**l ) are better 
determined than their magnitudes, (ii) a uniform- 
distribution model gives values of Ao(**l ) that do not 
necessarily decrease monotonically with 1 and that do 
not necessarily exhibit the simple alternation of sign in 
accordance with (_)u2, and (iii) Gaussian distributions 
and similar smooth models necessarily exhibit the 
properties denied for the uniform-distribution model. 
Examination of the signs in Table 1 leads to the 
following conclusions. 

(i) Cds(VO4)3I. Gaussian and similar distributions 
are excluded by the signs for l = 4, 8 and 10. A uniform 
distribution with 6 about 0.20 would give the correct 
signs up to l = 12; the negative sign for l = 14 is not 
significant since Ao(**14 ) is only one-tenth of its 
standard deviation. 

(ii) Cds(PO4)3Br. Gaussian and similar distributions 
are excluded by the signs for l = 6 and 8, and are 
contra-indicated by the signs for l = I0, 12 and 14, 
though these are not strongly determined. A uniform 
distribution with 6 ~ 0.11 is contra-indicated only by l 
= 1 0 .  

(iii) Cds(AsO4)aBr. Gaussian and similar distri- 
butions are contra-indicated by the sign for l = I0, 
though this is not strongly determined. A uniform 
distribution with 6 --. 0.06 gives the signs up to l = 10 
correctly, but is contra-indicated by the sign for 1 = 12; 

this is not significant, since Ao(**12 ) is only 1.1 times 
its standard deviation. 

(iv) Cds(VO4)aBr and Cd5(PO4)3C1. The signs are 
consistent with any narrow distribution (except for a 
very slight contra-indication of the Gaussian and 
similar distributions by l = 12 for the last-named). If 
the distribution is uniform, 6 ~ 0 . 0 4  for both 
compounds. 

4.2. Non-stoichiometry: halogen deficiency 

Direct chemical analysis of bulk material from the 
same batch cannot be expected to give a reliable 
indication of the composition of the single crystal 
actually used for structure determination. In addition to 
the usual uncertainties in chemical analysis for minor 
constituents - the halogen is of the order of 5% of the 
total - the proportion of halogen may differ in different 
crystals from the same batch, and analysis of the bulk 
material may be further vitiated by surface contami- 
nants. It is felt, therefore, that refinement of the 
structure gives a better indication of the halogen 
content of the actual crystal. This and part I (Sudar- 
sanan, Young & Wilson, 1977) give four estimates of 
the halogen content of each substance. These estimates, 
collected in Table 2, differ in their statistical reliability 
and the assumptions made in obtaining them. 

4.2.1. From length of the hexad axis. The simplest 
estimate is the ratio of half the length of the hexad axis 
to the accepted ionic diameter of the halogen in 
question. Since the halogen ions do pack together along 
e, the effective diameter of a halogen ion along e may 
be more than that of the ion coordinated only by 
cations but less than that in the crystalline form of the 
halogen. Both types of diameters were used for the 
estimates shown in the last two columns of Table 2. 
These estimates of halogen content are based on the 
assumption that the hexad axis is uniformly filled with 
halogen ions, which is contradicted by the observation 
that Ao(OOl) is non-zero for some even l ~: 0. Therefore, 
the estimates of halogen content obtained with the 
crystal diameters, especially, should be regarded as an 
upper limit. 

4.2.2. From refinements with atoms at +(0,0,¼) only. 
Part I gives site-occupancy factors obtained by 
refinement of a model structure with halogen atoms 
placed at +(0,0,¼) only; the values obtained are 
reproduced in Table 2, column 2. The corresponding 
temperature parameters fl33 are very large, and it is easy 
to see that this refinement is equivalent to the use of a 
model with a Gaussian distribution of halogens in the 
sense of §2.3 of the present paper. It was shown in §4.1 
that a Gaussian distribution is excluded for the first two 
compounds, and possibly for the third. The halogen 
content obtained by this method is thus subject to 
systematic error for the first two compounds, and 
suspect for the third. 
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4.2.3. From refinement with uniformly spaced 
atoms. Part I gives occupancy factors obtained by 
refining a model structure with halogen atoms placed at 
uniform intervals of 0.05c along the hexad axis. The 
sum of these occupancy factors is given in Table 2, 
column 3, and should be equal to the halogen content 
of the half-cell. The method is subject to some 
systematic error, in that it approximates what is 
probably a continuous distribution by a discrete set of 
positions. The error could, in principle, be investigated 
by refining models with different spacings, but in 
practice the interval is limited on one side by the need 
to use enough points to simulate the distribution, and 
on the other side by indeterminateness if the number of 
positions is greater than about ½L. This estimate of 
halogen content may perhaps be expected to be more 
reliable for wider distributions (i.e. for those com- 
pounds at the top of the table) than for the narrower 
ones. 

4.2.4. From mean structure factor for l = 0. The 
values of Ao(**O) given in Table 1 and reproduced in 
column 4 of Table 2 should be equal to the halogen 
content of a half-cell. In principle these are the best 
estimates of the halogen content, as they are indepen- 
dent of any model of this halogen distribution. In 
practice, they depend critically on the scaling factors, 
the positional and thermal parameters of the non- 
halogen atoms, and on the values of fl used in deter- 
mining X(hkO) in equation (3). The discussion in 
§§3.2.1 to 3.2.4 indicates that the scaling factors and 
the nonhalogen part of the structure are correct within 
the statistical scatter. The measures of halogen content 
discussed in §§4.2.2 and 4.2.3 also depend on these 
parameters, but the dependence is not so obvious. The 
discussion in §3.2.6 shows that, within the considerable 
statistical scatter, Cd5(VO4)31 gives some reason to 
suspect an underestimate of fll~. If the trend of Ao(**O ) 
with sin 2 0 exhibited by this substance is real, the 
halogen content by this method, extrapolating back to 
0 = 0, should be about 0.715 instead of 0-623. There is 
a similar but much weaker indication for Cds(POa)3Br; 
if accepted as real, Ao(**O) would be raised to about 
0.785. 

The preceding discussion leads to the estimates of the 
content of the half-cell shown in Table 4. The estimates 
are in reasonable agreement with each other. 

4.3. Attempts at quantitative agreement for halogen- 
distribution models 

4.3.1. Cds(VO4)3I. The signs of Ao(**l) are well 
determined (A/a > 3) up to l = 10. To obtain the 
correct sign for l = 10, 27r6 x 10 must be less than 4zr 
(6 < 0.2), and for l = 8, 27r6 x 8 must be greater than 
37r (6 > 0.1875). Any choice of 6 in this range will also 
give the observed sign for l = 12 (A/a = 2-8), and no 
choice will give the observed sign for l = 14 (A/a = 
0-1). The best (but very poor) quantitative agreement 
overall is obtained for 6 near the upper limit (0.199) 
and f = 0.864 (Table 5). The agreement cannot be 
substantially improved by adjustment of fl33; a change 
that improves l = 4 and 6 worsens l = 2 and 8. 

4.3.2. Cds(PO4)3Br. The signs of Ao(**l) are well 
determined up to l = 8, that for l = 10 is borderline 
(d/a = 3.1). The signs for l = 6 and 8 require that 7/6 
< 2~26 < 27r/8 (0.083 < 6 < 0.125). The small 
magnitude of Ao(**4) suggests a value near the upper 
limit; the sign for l = 10, if accepted, requires 27~6 < 
2z~/10 (6 < 0-10). It is not possible, however, to obtain 
quantitative agreement (Table 6), and the sign for l = 
10 is incorrect. The sign for l = 12 is not significant 
(A/o = 0.04). The value of 6 implied is 0.113. 

Table 5. Observed and calculated values of A(**I) for 
Cds(V04)31 

Difference 
l Ao(**l)(t7 ) (-)/J20.55(sin 1.25l)/I o 
0 0.623 (26) 0.687 2.5 

[0.715] [1.11 
2 -0.210 (7) -0.165 6 
4 -0-058 (5) -0.132 15 
6 -0.038 (6) -0.086 8 
8 -0.094 (7) -0.037 8 

10 0.027 (8) 0.004 2.9 
12 0.044 (16) 0.030 0.9 
14 --0.003 (28) 0.038 1-5 

Cds(VOa)3 I 

Cds(POa)3Br 

Cds(AsOa)3Br 
Cds(VOa)3Br 
Cds(PO4)3Cl 

Table 4. Summary of halogen-deficiency estimates 

From From 
single-halogen multiple-halogen 

occupancy occupancy From 
factor factors Ao(**O) 

0.800 (11) 0.734 (9) >0.623 (26) 
[0.715?1+ 

0.838 (11) 0.830 (19) >0.761 (29) 
[0.785?1+ 

0.911 (6) 0.925 (16) 0.848 (20) 
0.880 (8) 0.874 (12) 0.806 (32) 
0.836 (I0) 0.845 (19) 0.892 (39) 

"I" See text (§4.2.4). 

From 
c-axis length 

0.74-0.79 

0.83-0.89 

0.83-0.90 
0.83-0.90 
0.90-0.97 
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Table 6. Comparison o f  observed and calculated 
A(**l) for  Cds(PO4)3Br 

Difference 
l Ao(**l)(cr ) (-)1'20.99(sin 0.7 ll)/l a 

0 0.7605 (291) 0.703 2.0 
2 -0-3750 (192) -0-489 5.9 
4 0.0113 (122) 0-0735 5.1 
6 0.0796 (161) 0.148 4.3 
8 -0.0937 (167) -0.070 1.4 

I0 0.0824 (258) --0.0722 6.0 
12 -0.0019 (478) 0.065 1.4 
14 0.0814 (735) 0.035 0.6 

4.3.3. Cds(AsO4)3Br. Since the signs for l = 8 and 
10 are positive, zr/10 < 2~z6 < zr/8, so that  0 .05 < 6 < 
0 .0625.  Reasonable  qualitative agreement  is obtained 
for 2rc6 = 0 .36  (6 = 0 .057)  (Table 7), but the 
calculated magni tudes  are systematical ly large for large 
l. An additional tempera ture  factor  would improve the 
agreement  considerably,  but empirically a factor  of  the 
form exp(tt l l l)  is better than one of  the form exp(fllZ). 
With ¢t = 0 .136  the only serious d iscrepancy is for l = 
4 (columns 6 and 7 of  Table 7). This d iscrepancy can 
be reduced,  at the expense of  larger discrepancies 
elsewhere, by altering the distribution parameters  
slightly, as in the last three columns of  Table 7 (6 = 
0.060).  

4.3.4. Cds(VO4)3Br. The signs of  Ao(**l) alternate 
simply as (_)t/z, and Gauss ian  and similar distributions 
cannot  be excluded on the basis of  signs alone. The 
magni tude  of  Ao(**l ) for l = 12 is nearly three times its 
s t andard  deviation; its sign suggests 2zr6 × 12 < zt (6 < 
0.04),  but no choice of  6 gives numerical  agreement  for 

lower values of  l. Reasonable  agreement  can be 
obtained by inflating the observed values by a factor  of  
exp(al l l ) ,  as for Cds(AsO4)~Br, with 2~r6 = 0 .22 ,  ct = 
0 .195.  

It must  be remembered  that  the assumpt ion of  a 
uniform distribution is unnecessary  for this compound.  
I f  the Ao(**l ) were inflated by exp(0.2671) the result 
would be nearly constant ,  corresponding to 0.81 of  an 
a tom at + (0,0,~). The equivalent reverse compar ison  is 
made  in Table 8, in which the seventh column contains 

A(**I) = (--)t/20.806 exp(--0.231).  (51) 

The agreement  is about  as good as that  between 
columns 3 and 4. [The ratio of difference to s tandard  
deviation is the same,  whether  the observed A's are 
inflated or the calculated ones are deflated.] Calculated 
A(**l) 's  of  the form of equation (51) correspond to a 
C a u c h y  distribution of  atomic centers. 

4.3.5. Cds(PO4)3C1. The small size of  Ao(**10 ) and 
the weakly indicated sign of  Ao(**12 ) suggest zr/12 < 

Table 9. Observed and calculated values o f  A(**l) 
f o r  Cds(PO4)3CI 

Difference 
I Ao(**l)(a) (-)"23.25 (sin 0.264l)/I o 
0 0.8916 (390) 0.858 0.9 
2 - t:.7465 (424) -0.818 1.7 
4 0.7147 (338) 0.707 0.2 
6 -0.4775 (393) -0.542 1.6 
8 0.3704 (463) 0.348 0-5 

10 -0.1952 (806) -0.157 0.5 
12 -0.0809 (1866) -0-007 0.4 

Table 7. Observed and calculated values o f  A(**l) for  Cds(AsO4)3Br 

(-)uz2.35 x Ao(**l) x Difference 
l Ao(**l ) (a) (sin 0.36l)/l exp(0-02321 z) o 

0 0.8476 (196) 0.846 0.848 (20) 0.1 
2 -0.5902 (208) -0.775 -0.648 (26) 4.9 
4 0.2720 (79) 0.582 0.394 (11) 17 
6 -0.1408 (79) -0.326 -0.325 (18) 0.1 
8 0.0255 (120) 0.076 0.113 (53) 0.7 

10 0.0346 (175) 0.104 0.352 (178) 1.4 
12 0-0316 (276) -0.181 0.892 (779) 1.4 

Ao(**l) x Difference (-)t/22.23 x Ao(**l ) x Difference 
exp(0.1361) o (sin 0.381)/1 exp(0.147l) o 

0.848 (20) 0.1 0.847 0.848 (20) 0-1 
--0.775 (27) 0 --0.768 --0.792 (28) 0-9 

0.469 (14) 8 0.557 0.490 (14) 4.8 
--0.318 (18) 0.4 --0.291 --0.340 (19) 2.6 

0.076 (36) 0 0-028 0-083 (39) 1.4 
0.135 (68) 0.5 0.136 0.150(76) 0.1 
0.162 (141) 2.4 --0.184 0.184 (161) 2.3 

Table 8. Observed and calculated A(**l) for  Cds(VO4)3Br 

Difference Difference 
1 Ao(**l).(a ) Ao(**l) exp(0.195l) (--)u23.66 (sin 0.22l)/l a 
0 0.8059 (320) 0.806 (32) 0.805 0-0 
2 --0.5507 (184) --0.813 (27) --0.779 1.3 
4 0.2784 (103) 0.607 (22) 0.705 4.5 
6 --0.1773 (109) --0.571 (35) --0.591 0.6 
8 0.0940 (154) 0.447 (73) 0.449 0.0 

10 -0.0158 (252) --0.111 (177) --0.296 1.0 
12 0-0902 (321) 0-936 (333) 0.147 2.4 

(-)"20.806 exp(-0-231) a 
0.806 0-0 

-0.499 2.9 
0.309 3.0 

-0.191 1.3 
0-118 1.6 

-0.073 2.3 
0.045 1.4 
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2rc~ < 7t/10, and good agreement is obtained for c5 = 
0.0420 (Table 9). Good agreement cannot be obtained 
for calculated d(**/)'s of the form of equation (51). 

5. Summary 

5.1. Fourier synthesks 

The probability distribution of atomic centers ob- 
tained by Fourier synthesis based on the observable 
reflections is broadened and rippled through ter- 
mination effects. These effects are more prominent for a 
line section through the three-dimensional synthesis 
than for a one-dimensional synthesis. Deconvolution to 
remove the termination effects is not possible; obser- 
vation of reflections of higher order would make it 
possible to reduce them. 

The ripples in the syntheses (Fig. 1) are perhaps 
more prominent than would be expected from ter- 
mination effects; in particular, the dip at z ~ 0.12 may 
be significant (§5.3). 

5.2. Site-occupancy refinement 

The theory in §2.2 indicates that refinement of site 
occupancies does not avoid termination effects; site 
occupancies may be expected to refine toward approxi- 
mately the same broadened and rippled distribution as 
is obtained by Fourier synthesis. This conclusion is 
supported by the comparisons in Fig. 1. 

5.3. Fitting of postulated distributions 

The uniform distribution is the only simple model, 
among those that have been tried, that gives qualitative 
agreement with the 'observed' values of A(**l) for all 
five compounds. Gaussian and Cauchy distributions 
are inconsistent with the signs for the first two (§§4.3.1 
and 4.3.2). A Cauchy component improves the 
agreement for the third and fourth (§§4.3.3 and 4.3.4); 
in fact for the fourth, Cds(VO4)3Br, a Cauchy is at least 
as satisfactory as a uniform distribution. Only for the 
last, least imperfect, compound, Cds(PO4)3CI (§4.3.5), 

is agreement with a uniform-distribution model entirely 
satisfactory. 

The discrepancies between the 'observed' A(**l)'s 
and those calculated for a uniform distribution are 
different for the different compounds, but there appears 
to be one possibly significant feature: A(**4) is smaller 
than expected for all compounds but Cds(PO4)3C1. This 
may be a further manifestation of whatever feature of 
the distribution is associated with the dip at z ~ 0.12; 
this is repeated by the symmetry at z ~ 0.38, 0.62, 
0.88, i.e. at intervals of approximately one-quarter of 
the hexad axis. 

5.4. Non-stoichiometry 

The estimates of halogen content by four indepen- 
dent methods, collected in Table 4, are in reasonable 
agreement with each other. That obtained by close- 
packing of the halogens along the hexad axis cannot be 
considered quantitative, since (i) literal close-packing 
would imply that Ao(OOl ) = 0 for l 4: 0, contrary to 
observation, and (ii) the effective ionic diameter is 
unknown, being dependent on environment. The other 
three estimates of halogen content agree, in general, 
within two standard deviations. Their average value 
leads to the estimates of halogen deficiency 2x given in 
the first column of Table 10. The estimate of scatter 
given in parentheses is based on their mean deviation 
from the mean. In all five cases the deficiency is several 
times larger than the scatter, so it must be concluded 
that it corresponds with some physical reality, but the 
possibility is not excluded that there is some 
substitution of a lighter ion, perhaps F or O, for an 
occasional heavy halogen, rather than an actual 
vacancy. 

5.5. Deductions from the model 

The number of halogen atoms in a chain, as pictured 
in the model in § 1 of this paper, is 

2r/ma x + 1 = (2x) -~ -- 1, (52) 

and runs from about three for Cds(VO4)3I to about 

Table 10. Halogen-ion deficiency, width of  distribution, chain length, and effective X diameter in cadmium 
'apatites " 

Number of Effective X Separation 
Deficiency fi X atoms in diameter Ionic Crystal in X 2 

2x (§§4.3.1- chain (equation 53) diameter* diameter* molecule 
Compound (Table 4) 4.3.5) (equation 52) (A) (A) (A) (A) 
Cds(VO4)3I 0.250 (34) 0.199 (4) 3.0 (0-6) 4.2-5.0 4.40 4.12 2.66 
Cds(PO4)3Br 0-182 (23) 0.113 (3) 4.5 (0.8) 3-65 (10)) 
Cds(AsO4)3Br 0-105 (31) 0.058 (2) 8.5 (3.0) 3.36 (5) / 3-92 3-64 2.29 
Cds(VO4)3Br 0.147 (32) 0.035 (2) 5.8 (1.9) 3-36 (4) )  
Cds(PO4)3Ci 0.142 (23) 0.042 (2) 6.0 (1.4) 3.35 (3) 3.62 3.34 1.99 

* Shannon (1976). 
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eight for Cds(AsO4)3Br (Table 10, column 3). The 
effective ionic diameter depends on the spread, 6, of 
atomic-center sites about z = ¼ as well as on the 
halogen deficiency. From the model in § 1 it is easily 
seen that the interionic spacing is 

4x 
X -  X =  ½c + fi c, (53) 

1 - 4 x  

where c is the length of the hexad axis. Values of 6 from 
§§4.3.1-4.3.5 are given in column 2 of Table 10; the 
estimates of reliability are based on the amount by 
which fi can be varied without seriously affecting the 
sign agreements for the Ao(**l)'s. A check against 
blunders in fi is given by comparing ¼ - fi with the value 
of z at which the relative probability falls to one-half in 
Fig. 1; agreement is within 0.01. 

Effective ionic diameters (interionic spacings) deter- 
mined from equation (53) and 2x, fi, and e are given in 
column 4 of Table 10, with uncertainties corre- 
sponding to those in 2x and ft. That for the iodide has a 
very large uncertainty. The others are appreciably 
smaller than the usual ionic diameters (Shannon, 1976), 
the difference ranging from 7% to 16%. They are very 
much larger than the homopolar distances in X z 
molecules, and agree better with the 'crystal diameters' 
given by Shannon. 

6. Conclusions 

The four different analytical approaches have all led to 
the conclusion that these compounds are halogen- 
deficient and that the halogens are distributed Over a 
variety of positions, along the c axis, centered on the 
ideal position (0,0,¼). 

The different estimates of the amount of halogen 
present generally agreed within 10-15%. It was not 
possible to state with certainty which method led to the 
better estimate, one interesting reason being that least- 
squares refinement of the distributed occupancy fac- 
tors, it is shown, suffers from the same defects as does 
the Fourier-synthesis approach: the occupancy factors 
do not refine to the true values but toward the 
distribution represented by the Fourier series, reproduc- 
ing its ripples exactly in a special case of uniformly 
distributed occupancy points and approximately in 
other cases. 

For the actual distribution of the halogens a square- 
wave model showed no serious disagreements with 
observation whereas Gaussian and Cauchy distri- 

butions did and, hence, could be ruled out as a class. 
On this model, average chain lengths could be 
calculated and were found to be physically reasonable, 
ranging from about three ions in the iodide case to 
about eight ions in the arsenate bromide case. 

Wholly unequivocal determinations of the distri- 
bution of halogen require a resolution of adjacent 
scattering points (effectively in the Fourier transform of 
the reciprocal-space intensity data) better than that 
available even though Mo Ka radiation was used. This 
resolution is noted to be different from the precision 
with which the position of an individual atom may be 
determined when it is at least ~,/2 from its nearest 
neighbor, 2 being the wavelength associated with the 
highest-order Fourier term (farthest out reciprocal- 
lattice point) used. 

It was found that the two ordinarily used methods of 
determining the scattering density along a line using 
three-dimensional data, a line synthesis and a line 
section, did differ in resolution, the line synthesis 
exhibiting about 30% less smearing with the same data. 

These five compounds constitute examples of 
sterically imposed non-stoichiometry (i) occurring and 
(ii) being a mechanism of accommodation of oversize 
ions. 
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